Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1.

نویسندگان

  • Miguel Bartolomé
  • Ana Moreno
  • Carlos Sancho
  • Heather M Stoll
  • Isabel Cacho
  • Christoph Spötl
  • Ánchel Belmonte
  • R Lawrence Edwards
  • Hai Cheng
  • John C Hellstrom
چکیده

Greenland Stadial 1 (GS-1) was the last of a long series of severe cooling episodes in the Northern Hemisphere during the last glacial period. Numerous North Atlantic and European records reveal the intense environmental impact of that stadial, whose origin is attributed to an intense weakening of the Atlantic Meridional Overturning Circulation in response to freshening of the North Atlantic. Recent high-resolution studies of European lakes revealed a mid-GS-1 transition in the climatic regimes. The geographical extension of such atmospheric changes and their potential coupling with ocean dynamics still remains unclear. Here we use a subdecadally resolved stalagmite record from the Northern Iberian Peninsula to further investigate the timing and forcing of this transition. A solid interpretation of the environmental changes detected in this new, accurately dated, stalagmite record is based on a parallel cave monitoring exercise. This record reveals a gradual transition from dry to wet conditions starting at 12,500 y before 2000 A.D. in parallel to a progressive warming of the subtropical Atlantic Ocean. The observed atmospheric changes are proposed to be led by a progressive resumption of the North Atlantic convection and highlight the complex regional signature of GS-1, very distinctive from previous stadial events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Punctuated Shutdown of Atlantic Meridional Overturning Circulation during Greenland Stadial 1

The Greenland Stadial 1 (GS-1; ~12.9 to 11.65 kyr cal BP) was a period of North Atlantic cooling, thought to have been initiated by North America fresh water runoff that caused a sustained reduction of North Atlantic Meridional Overturning Circulation (AMOC), resulting in an antiphase temperature response between the hemispheres (the 'bipolar seesaw'). Here we exploit sub-fossil New Zealand kau...

متن کامل

Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1.

The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El ...

متن کامل

Global Thermohaline Circulation and Ocean - Atmosphere Coupling

A global ocean general circulation model (GCM) with idealized geometry (two basins of equal size, Marotzke and Willebrand, 1991) is coupled to an energy balance atmospheric model with nonlinear parameterizations of meridional atmospheric transports of heat and moisture. With the coupled model that prescribes the atmospheric heat and moisture transports, the North Atlantic meridional mass overtu...

متن کامل

What do benthic δ13C and δ18O data tell us about Atlantic circulation during Heinrich Stadial 1?

Approximately synchronous with the onset of Heinrich Stadial 1 (HS1), δC decreased throughout most of the upper (~1000–2500m) Atlantic, and at some deeper North Atlantic sites. This early deglacial δC decrease has been alternatively attributed to a reduced fraction of high-δC North Atlantic Deep Water (NADW) or to a decrease in the NADW δC source value. Here we present new benthic δO and δC rec...

متن کامل

Evidence for a bi-partition of the Younger Dryas Stadial in East Asia associated with inversed climate characteristics compared to Europe

The Younger Dryas Stadial (YDS) was an episode of northern hemispheric cooling which occurred within the Last Glacial Interglacial Transition (LGIT). A major driver for the YDS climate was a weakening of the Atlantic Meridional Overturning Circulation (AMOC). It has been inferred that the AMOC began to strengthen mid-YDS, producing a bipartite structure of the YDS in records from continental Eu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 21  شماره 

صفحات  -

تاریخ انتشار 2015